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Summary

1. Quantitative measurements of colour, pattern and morphology are vital to a growing range of disciplines.

Digital cameras are readily available and already widely used for making these measurements, having numerous

advantages over other techniques, such as spectrometry. However, off-the-shelf consumer cameras are designed

to produce images for human viewing, meaning that their uncalibrated photographs cannot be used for making

reliable, quantitative measurements. Many studies still fail to appreciate this, and of those scientists who are

aware of such issues, many are hindered by a lack of usable tools for making objective measurements from

photographs.

2. We have developed an image processing toolbox that generates images that are linear with respect to radiance

from the RAW files of numerous camera brands and can combine image channels from multispectral cameras,

including additional ultraviolet photographs. Images are then normalised using one or more grey standards to

control for lighting conditions. This enables objective measures of reflectance and colour using a wide range of

consumer cameras. Furthermore, if the camera’s spectral sensitivities are known, the software can convert images

to correspond to the visual system (cone-catch values) of a wide range of animals, enabling human and non-

human visual systems to be modelled. The toolbox also provides image analysis tools that can extract luminance

(lightness), colour and pattern information. Furthermore, all processing is performed on 32-bit floating point

images rather than commonly used 8-bit images. This increases precision and reduces the likelihood of data loss

through rounding error or saturation of pixels, while also facilitating the measurement of objects with shiny or

fluorescent properties.

3. All cameras tested using this software were found to demonstrate a linear response within each image and

across a range of exposure times. Cone-catchmapping functions were highly robust, converting images to several

animal visual systems and yielding data that agreed closely with spectrometer-based estimates.

4. Our imaging toolbox is freely available as an addition to the open source ImageJ software. We believe that it

will considerably enhance the appropriate use of digital cameras across multiple areas of biology, in particular

researchers aiming to quantify animal and plant visual signals.
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cation, cone-catch quanta, image processing, pattern analysis, signalling, spectrometer

Introduction

Objective measures of appearance provide vital information in

numerous areas of biology. This ranges from studies investi-

gating themechanisms and functions of visual signals, commu-

nication and camouflage across many taxonomic groups,

work investigating human and non-human vision, through to

palaeontology and more applied areas, such as forensics and

medical diagnoses. The ability to analyse such traits rigorously

is essential if we are to understand their evolution and function.

There exists a range of methods for this, with probably the

most widespread technique in studies of ecology and evolution

being the use of spectrometry. However, as discussed previ-

ously (Stevens et al. 2007; Stevens, Stoddard &Higham 2009),

spectrometry has a number of major drawbacks, including

being restricted to small point samples and hence being unsuit-

able for analysing the two- or three-dimensional nature of

many patterns, being difficult to use in the field, requiring close

contact with the specimen and being strongly affected by

changes in measurement angle and distance from the probe to

the specimen (White et al. 2015).

Digital cameras offer an alternative to other approaches,

being versatile tools for gathering data in a wide range of

scenarios. Their substantial consumer base is also continually

driving lower prices together with higher resolutions and*Correspondence author. E-mail: jt@jolyon.co.uk
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dynamic ranges (the ratio between the lightest and darkest val-

ues the camera is sensitive to within one photo). This is in con-

trast to equipment such as spectrometers, which remain

specialist in scope and beyond the financial means of many

researchers with limited budgets. Digital cameras also over-

come many of the limitations of other methods, being easy to

use in both the laboratory and field, non-invasive without

requiring touching or being close to the specimen, andwith vast

potential to implement a range of computer science approaches

to analyse entire colour patterns, visual scenes and two- and

three-dimensional properties of objects (Shapiro & Stockman

2001; Stevens & Cuthill 2006; Stoddard, Kilner & Town 2014;

Allen & Higham 2015). Today, it is also relatively straightfor-

ward to use ultraviolet (UV)-sensitive cameras, an important

consideration givenmany animals perceiveUV light.

Despite their advantages and substantial potential for scien-

tific use, there are several considerations and steps required in

order to use digital cameras and images properly (Stevens et al.

2007; Stevens, Stoddard & Higham 2009; Pike 2011). Briefly,

photographs are optimised for human viewing on low-

dynamic range display media so that they have a nonlinear

response to changes in light intensity or radiance, meaning that

data from nonlinear images will almost always under- or over-

estimate true object values. In addition, images also need to be

standardised to control for changes in lighting conditions. Fur-

thermore, a linear response to radiance is a prerequisite tomea-

suring a camera’s spectral sensitivities (Lovell et al. 2005;

Stevens et al. 2007; Pike 2011; Garcia et al. 2014), which is

essential if one is to convert images to animal visual system

spaces. These issues mean that digital images should not be

used for making objective measures of brightness, colour or

pattern, either within or between photographs without first

undertaking appropriate calibration (Stevens et al. 2007). Yet

studies of animal and plant visual signals still frequently fail to

address these problems when using cameras, resulting in inac-

curate or even flawed data. Although a variety of studies do

use fully calibrated cameras for analysing a diversity of visual

signals (e.g. Lovell et al. 2005; Spottiswoode & Stevens 2010;

Allen, Stevens & Higham 2014; Stevens, Lown & Wood

2014a; Stoddard, Kilner & Town 2014), these remain relatively

infrequent. Beyond this, many studies fail to utilise the full

potential of digital image analysis, for example the possibility

of transforming data into metrics corresponding to animal

vision, or analysing an object’s pattern.

Ultimately, a major reason for the issues outlined above is

that software technology lags behind that of camera availabil-

ity. Generating linearisation curves manually often requires

expensive equipment, such as calibrated grey standards and/or

a spectroradiometer, in addition to coding skills with expensive

software suites such as MATLAB. However, Chakrabarti, Schar-

stein & Zickler (2009) found that a linear relationship between

RAW images and radiance could be preserved inmany camera

models when extracted correctly with freely available

DCRAWsoftware (Coffin 2015). This eliminates an important

stumbling block when making objective measures from digital

images. However, until now, there has been no user-friendly

software program that enables researchers to normalise their

images, incorporate multiple layers (for example visible and

UV channels), convert to animal colour spaces and to measure

images easily. Instead, researchers have needed to do much of

this manually, including the sometimes complex calculations

involved. Here, our aim is to address these issues with the

release of a dedicated suite of tools, in freely available open

source software. Below, we first give an overview of the tool-

box (in addition to the associated user guide) and then demon-

strate its accuracy for importing linear images, normalising

them and converting to animal cone-catch data.

Image calibration and analysis toolbox overview

The following is a brief overview of the Image Calibration

and Analysis Toolbox. Further detailed instructions and

examples are included with the associated guide that can be

downloaded freely along with the image processing toolbox

at www.jolyon.co.uk or www.sensoryecology.com. The tool-

box is a series of additions for the free open source IMAGEJ

software (Schneider, Rasband & Eliceiri 2012), and the files

need to be copied to the IMAGEJ ‘PLUGINS’ folder. The tool-

box is capable of both extracting linear images and per-

forming image calibrations, as well as implementing a range

of analytical tools for measurement.

EQUIPMENT CHECKLIST

For making objective measurements of reflectance (bright-

ness), colour or pattern in the human-visible range all that is

required is a consumer digital camera that can produce RAW

images, a grey standard (or multiple standards), and a scale

bar (required for pattern analysis across different pho-

tographs). For set-ups that are restricted to human-visible light

(ca. 400–700 nm), a photography grey standard (there are vari-

ous types available from most photography suppliers) is suffi-

cient and readily affordable. For ultraviolet imaging, the

standard must be grey into the UV spectrum (i.e. down to ca.

300 nm). For this, a sintered PTFE (polytetrafluoroethylene,

e.g. Spectralon by Labsphere) grey standard is frequently used

with reflectance values from around 5% to 99%. Artificial

lighting is also more problematic for UV imaging as a single

broad-spectrum light source is required. Further information

can be found in the dedicated user guide. Measurements from

this set-up using our toolbox are objective, but would be speci-

fic to the camera rather than a visual system (i.e. if one were to

use a different camera, the results might be slightly different

due to variation in the sensor sensitivity curves of different

camera makes and models). Visual system-specific results

require a camera with known spectral sensitivities. These sensi-

tivities are difficult to measure, so we have provided the sensi-

tivities of a number of camera systems in the toolbox.

Ultraviolet sensitivity is common in many taxa, such as birds,

reptiles, amphibians, fish, stomatopods, insects and some

mammals, meaning that a full-spectrum-converted camera

is required to cover their sensitivities. In this instance, one

photograph through a visible pass filter and a second through

a UV pass filter can be combined by the software to cover the
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range of wavelengths required to model a non-human visual

system.

TAKING AND PROCESSING PHOTOS

Photographs must be taken in RAW format with one or more

grey standards (either in the same photograph or a second pho-

tograph takenwith identical lighting and camera settings: a ‘se-

quential method’; Stevens, Stoddard & Higham 2009). Once

the photographs are transferred to a computer, the first step is

to generate a ‘multispectral image’, being a stack of images

taken at different ranges of wavelengths (‘channels’ hereafter).

Standard colour photographs already comprise a stack of red,

green and blue images, although this software can handle any

number of additional channels. The script will guide the user

through the various import options and requires specifying the

camera and filter (if any) combination, the grey standard

reflectance percentage value(s) and how to align the visible and

UV images for UV photography. Standard filter combinations

are included (e.g. ‘visible’ for standard red–green–blue (RGB)

images and ‘visible & UV’ for UV images). Additional camera

and filter combinations can be specified by creating a new con-

figuration file, as detailed in the guide. Figure 1 shows the

image preparation sequence for combing visible and ultraviolet

(UV) photographs.

After specifying the import settings, prompts will ask the

user to select the RAW image file(s), the relevant channels are

then extracted from the RAW images at 16-bits per channel,

and the slices in the stack are aligned. Next, the script prompts

the user to select the grey standard(s) by drawing a selection

area (e.g. box, circle or custom polygon) over the grey stan-

dard(s). Multiple grey standards are recommended for bright

field conditions to control for veiling glare (see below). The

grey standard measurements and alignment offsets are saved

in a .mspec file alongside the RAW images. This .mspec file

saves all the information required to reload this multispectral

image and is linked to the RAW files, so it must remain in the

same directory as theRAWfiles.

The software then converts the multispectral stack to 32-bits

per channel and performs the normalisation, controlling for

lighting changes between photographs and scaling pixel values

to reflectance (this process takes around a second). When re-

opening an .mspec image, its associated RAW files are auto-

matically imported, the channels are arranged and converted

to a 32-bit stack, and the pixels are normalised and aligned.

This process takes just a few seconds depending on the number

of channels, resolution and computer. At this point, reflectance

values and colours in the normalised image can be measured

objectively and regions of interest (ROIs) can be drawn over

the parts of the image to bemeasured. Pattern analysis requires

uniformly scaled images if patterns are being compared

between different photographs (i.e. the images must have the

same number of pixels per unit length). To use the automated

scaling, the user can use the line tool to draw a line along a

known scale bar in the image, press the ‘S’ key and specify the

length of the ruler when prompted. The toolbox resizes the

image to a scale set by the user automatically before pattern

measurement. Bird egg colours and patterns are commonly

measured in brood parasitism (e.g. Spottiswoode & Stevens

2010; Stoddard & Stevens 2010), camouflage and evolutionary

studies (Kilner 2006). To facilitate egg measurement, the tool-

box also includes an egg measurement and selection tool that

allows the user to click a few points around the edge of an egg

(or a similarly shaped object) and tomodel the curvature of the

egg and calculate its shape and volume metrics (Troscianko

2014). The scale bar and regions of interest are saved alongside

the .mspec file and are automatically reloaded when the .mspec

Fig. 1. Multispectral image preparation example. This diagram outli-

nes the important steps taken in order to create a normalised, aligned

stack from a scene photographed in both visible and UV light. Quanti-

tative measurements can be made from the resulting image, or it can be

converted to animal cone-catch quanta if the camera’s sensitivity func-

tions are known. The final step shows regions of interest being selected.

The user can select whether the regions labelled ‘p’ for petal in this

instance should all be measured individually, or whether they should be

combined prior to automated measurement, enabling easy within and/

or between region and photographmeasurements. Channels are named

with the lower case prefix denoting the filter type (e.g. ‘v’ for visible and

‘u’ for UV), and the suffix the camera’s channel (e.g. R, G or B). Many

more combinations can be created with additional filters.
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image is opened. Batch image processing tools included in the

toolbox allow automated measurement of the colour, lumi-

nance and pattern properties frommultiple image selections in

a folder with any number of .mspec images (see Fig. 1). Once

the colours, patterns and luminance distributions of regions

have been measured, there are further tools for conducting

analyses, for example calculating pairwise difference values

between colours from cone-catch images using models of

visual discrimination (Vorobyev & Osorio 1998; Siddiqi et al.

2004), or pattern difference analyses.

Toolbox technical descriptions and testing

EXTRACTING LINEAR IMAGES

RAW photographs are proprietary file formats specific to

each camera manufacturer that preserve the analog-to-digital

photosensor responses in a 12- or 14-bit format, and each

manufacturer uses their own file extension (e.g. ‘.CR2’ or

‘.NEF’ for Canon and Nikon, respectively). Red, green and

blue photosensors are arranged in a non-overlapping mosaic

on the camera sensor, so these must be demosaiced such that

each pixel has all three colour values. DCRAW (Coffin 2015) is

an open source software package that can read the RAW

files from most camera manufacturers, perform the demosaic

and, most importantly, extract the pixel values in a linear

fashion (Chakrabarti, Scharstein & Zickler 2009) and output

a 16-bit image. This negates the need to manually calculate

the nonlinearity of a given camera and calculate a linearisa-

tion equation (as specified in Stevens et al. 2007). Our tool-

box utilises IJ-DCRAW (Sacha 2013), a PLUGIN for IMAGEJ that

uses DCRAW (Coffin 2015) to extract pixel data from RAW

files linearly.

TESTING LINEARITY METHODS

Eight off-the-shelf consumer digital cameras were used to test

the linearity of extracted images. The cameras consisted of four

Nikon D7000s having undergone full-spectrum quartz conver-

sion (see below, two with Nikon Nikkor 105 mm lenses, one

with a Coastal Optics 60 mm quartz lens and one with a

Coastal Optics 105 mm quartz lens), a Nikon D90 (with

Nikon Nikkor 105 mm lens, having undergone quartz full-

spectrum conversion), a Canon 5DMKII (not converted), a

Canon 7D (with quartz full-spectrum conversion, both with a

Canon 50 mm f/1�4 lens) and a mirror-less Samsung NX1000

(converted to full spectrum with no quartz filter, fitted with a

Pentax Asahi Super Takumar 50 mm). A set of eight diffuse

Spectralon reflectance standards (with percentage reflectance

values of 2, 5, 10, 20, 40, 60, 80 and 99) was photographed in a

dark room, illuminated from a distance of 2 m at right angles

to their surfaces with an Iwasaki eyeColour arc lamp that has a

broad emission spectrum designed to simulate the CIE (Inter-

national Commission on Illumination) recommendedD65 illu-

mination. The bulb wasmodified to remove its UV filter (using

a steel brush drill bit to remove the coating from the bulb),

enabling UV photography while replicating natural illumina-

tion conditions. Standard reflectance values were verified using

a Jeti Specbos 1211 UV spectroradiometer, measuring reflec-

tance relative to the 99% standard from 300 to 700 nm. All

photographs were taken in RAW format using an ISO of 400.

Exposures were selected that had 99% standard pixel values as

close to the maximum (saturation) level as possible, and pho-

tographs were taken across the whole range of available aper-

ture stops (7 or 8 photographs depending on the lens model),

resulting in a number of photos from each camera taken across

a wide range of integration times (‘shutter speeds’ hereafter).

In order to test for the linearity of pixel responses across a large

dynamic range, we modelled pixel values for each channel

against calibrated standard reflectance values. Reflectance val-

ues were first multiplied by the pooled average grey standard

pixel response for that photograph to control for light intensity

differences between different apertures. This allowed us to

determine whether linearity holds within and between images

of different shutter speeds.

L INEARITY RESULTS

Linear regressions between pixel values and normalised reflec-

tance values were found to be near perfect fits across all eight

reflectance standards and shutter speeds (see Fig. 2). Coeffi-

cients of determination (R2 values) were all >0�998 for all cam-

era models and colour channels (mean = 0�999, median

>0�999). These findings improve on the precision of previous

authors who found images extracted linearly with DCRAW are

indeed linear (Chakrabarti, Scharstein & Zickler 2009; Akkay-

nak et al. 2014). All images will contain some level of noise

(which are dependent on the sensor, its ISO gain, and light

levels reaching the sensor causing shot noise). RAW images do

not support negative numbers, so noise will artificially increase

the pixel values near zero, limiting the camera’s dynamic range.

While our lowest reflectance standard (2%) maintained linear-

ity, measurements nearer zero will become less reliable and

artificially increased as the sensor’s signal to noise ratio

decreases. This does not mean the software cannot be used to

measure dark objects, but does imply that very dark and light

objects cannot be measured in the same photograph (the

dynamic range of the camera becomes limiting).Whenmeasur-

ing dark objects, grey standard(s)with a low level of reflectance

should be used. Photographing the same scene with a shorter

exposure would then allow measurement of lighter objects,

similar to the principles of high-dynamic range photography.

However, in practice, most biological objects do not have such

extremely low reflectance values.

Normalisation

Natural and artificial light sources (illuminants) vary in inten-

sity and colour (Endler 1993), meaning two photographs taken

at different times, or in different habitats, can rarely be com-

pared without controlling for these lighting changes (even

under laboratory conditions). Normalisation of digital images

controls for differences in illumination between photographs

by scaling each of the colour channels to a uniform reflectance
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level. Grey or white standards of a known reflectance are used

in the image tomeasure the responses of each channel and cor-

rect them accordingly in a manner similar to a visual system’s

chromatic adaptation to ambient lighting (Stevens et al. 2007).

This is similar to setting the ‘white balance’ in photography;

however, this operation requires linear images and so is not

performed correctly in photography software packages that

offer a white balance eye dropper tool on nonlinear images

designed for viewing on prints and screens. The ideal standard

should have a flat reflectance spectrum across the wavelengths

being photographed (i.e. grey) and should be highly diffuse

(i.e. demonstrate Lambertian reflectance, scattering reflected

light equally in all directions). Grey standards around the 20–
50% level have the advantage that they are less likely to be

inadvertently over-exposed (Stevens et al. 2007), and are used

routinely in photography. However, white standards (e.g. 95–
99% reflectance) are advantageous because they can more

easily be used to set the image’s exposure with on-screen his-

tograms (judging the exposure from the highest peak in the his-

tograms). The angle of the grey standard(s) relative to the

illuminant and camera are extremely important, particularly

when the illuminant is a point source (highly directional) rather

than diffuse.When the object beingmeasured is roughly planar

(such as a butterfly wing), the grey standard should be in the

same plane as the object and at the same angle. If the object

beingmeasured is more complex then the angle of the standard

should be based on the direction of the illuminant, either

directly facing the illuminant if it is an artificial point source, or

level with the ground under natural daylight conditions (as-

suming the surfaces being measured are more likely to be hori-

zontal in this case). Whatever grey standard angle rules are

decided upon, it is critical that this is kept uniform across pho-

tographs and treatments. Grey standards in linear images can

also be used to measure colour or intensity changes in the illu-

minant itself. Illuminant colour can bemeasured from the rela-

tive ratios of the linear RGB values, or, if exposure time is

controlled for the intensities between photographs can also be

measured (see Lovell et al. 2005 and Arenas, Troscianko &

Stevens 2014).

The toolbox calculates normalised pixel values Vnorm from

their linear pixel values Vlinear, the grey standard reflectance

value S, themaximumbit range value (in this case the unsigned

16-bit maximum) and the mean pixel values for the grey stan-

dardG:

Vnorm ¼ Vlinear

S
100

� �
65; 535

G
eqn 1

MULTIPLE GREY STANDARDS

No lens can completely eliminate internal reflections and

light ‘bleeding’ onto the sensor from undesired sources,

resulting in optical veiling glare (McCann & Rizzi 2007).

This effect is most prominent in ‘lens flare’ artefacts pro-

duced when photographing into or near a light source such

as the sun, but can be impossible to detect when the arte-

facts are less extreme. Optical veiling is more likely to mani-

fest in bright field conditions than a laboratory dark room,

and even more common when using UV filters, resulting in

an increased black point and reducing the camera’s

dynamic range (and the photograph’s contrast). Calculating

a photograph’s black point requires two or more grey stan-

dards – ideally with reflectance values near the top and bot-

tom of the camera’s range (i.e. a black and a white

standard). We have therefore added the ability for the tool-

box’s normalisation protocol to utilise any number of grey

standards so that the black point can be estimated. The

software prompts the user to input the reflectance values of

the standards used and then asks them to draw a selection

area over each respective standard. A linear regression is

then plotted between the mean measured standard values,

and the normalised pixel values are calculated from the

resulting straight line equation (i.e. eqn 1, plus an intercept).

If more than two standards are used the script warns the

user if the linearisation fit is lower than 0�98. In circum-

stances where multiple standards are not available and veil-

ing glare could be a concern the toolbox can also estimate

the dark point based on the channel’s histogram by assum-

Fig. 2. Example of camera linear responses from a Nikon D7000. Expected reflectance values normalised between exposures (x-axis) are plotted

against mean observed pixel values measured for each standard (y-axis). This normalisation allows us to test for within and between photograph lin-

earity across a wide range of apertures and shutter speeds while preserving the actual pixel value on the y-axis, allowing us to detect any hardware-

based nonlinearity at specific pixel values. Error bars showmean�1 standard deviation; point brightness is scaled with aperture.
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ing that the lowest 0�5% of pixels have a reflectance of

0�5% (the absolute lowest pixel value is not used because it

will be highly susceptible to noise).

THE SEQUENTIAL METHOD

Sometimes, the reflectance standard cannot be placed directly

into the image being measured, for example, when pho-

tographing a free-ranging animal before it moves away. In the

light of this, the toolbox offers an option for selecting a grey

standard in a separate photograph taken under identical condi-

tions as the target (Stevens, Stoddard & Higham 2009). When

using this option, it is essential that there are no lighting

changes or camera setting changes between photographs, so

the photographs should be taken as fast as practically possible,

and avoiding changeable lighting conditions such as patchy

cloud. Further details are available in the guide.

Mapping to cone-catch values

Many studies analysing visual signals seek to calculate pre-

dicted photoreceptor responses (cone-catch values) of animal

visual systems and then to utilise this in further models. The

spectral sensitivities of a camera’s red, green and blue channels

vary between models and will not match human long-wave,

medium-wave and short-wave (LMS) receptor sensitivities per-

fectly. The colours generated by a camera and lens combina-

tion are therefore device dependent, and a mapping function

must be used to convert from camera colours to standardised

colorimetric values or visual system specific data (such as LMS

or CIE XYZ space, or cone-catch values) (Hong, Luo &

Rhodes 2000; Westland, Ripamonti & Cheung 2004; Lovell

et al. 2005; Stevens & Cuthill 2006; Stevens et al. 2007; Pike

2011). In theory, these functions are estimates subject to error,

and cannot rule out metamerism, where, for example, two dif-

ferent colours viewed under the same illumination could pro-

duce the same RBG values, but could produce different LMS

values.Metamerism is exacerbated by spectra that have partic-

ularly sharp steps in reflectance across different wavelengths.

However, natural spectra tend to be smooth enough for accu-

rate polynomial mapping with very low degrees of error

(Hong, Luo & Rhodes 2000; Lovell et al. 2005; Stevens et al.

2007; see below). Our toolbox generates these mapping func-

tions by estimating camera RGB and visual system cone-catch

values (e.g. human LMS values or CIE XYZ space; see below

for mapping to non-human photoreceptors) from a library of

natural spectra under a specific illuminant. The following

examples show the calculation of long-wave cone-catch values

(quanta,Lc), and these are repeated for all camera and receptor

channels:

Lc ¼
Xkmin

kmax

lkQkIk eqn 2

where lk is the long-wave sensitivity, Qk is the spectral reflec-

tance of the sample, and Ik is the illuminant’s spectral radiance

at wavelength k. Cone-catch quanta are then normalised using

eqn 3 to Ln so that a grey surface viewed under illuminant

I has equal cone-catch quanta in all channels according to the

vonKries coefficient law of chromatic adaptation (i.e. incorpo-

rating an aspect of colour constancy, which is also standard in

methods based on reflectance spectrometry), where Lwr is the

cone-catch quanta calculated for a white reference:

Ln ¼ Lc

Lwr
eqn 3

A multiple regression approach is then used to create the

mapping functions for each receptor channel from the cam-

era’s responses. The number of interactions and transforma-

tions in the polynomial can vary (see Hong, Luo & Rhodes

2000), for example:

L ¼ a1Rþ a2Gþ a3Bþ a4RGþ a5RBþ a6GB eqn 4

L ¼a1Rþ a2Gþ a3Bþ a4RGþ a5RBþ a6GB

þ a7RGBþ a8R
2 þ a9G

2 þ a10B
2 eqn 5

In this example, there are three camera colour channels

and three cone types. However, additional channels can be

added to these polynomial functions if more camera chan-

nels are available. The addition of more camera channels

and higher level interactions can make these models large

and slow to converge and subsequently slow to apply to

an image. Our cone mapping script therefore offers tools

to set the maximum number of interactions (two and three

way, respectively, in the examples above), whether to

include square transforms, and can also use stepwise model

simplification to remove terms from the model that do not

improve the model’s fit given the degrees of freedom they

consume, thus reducing model overfitting. This model sim-

plification can be based optionally on the Akaike Informa-

tion Criterion (AIC) or Bayesian Information Criterion

(BIC), with the latter being more conservative, removing

more model terms. One advantage of polynomial colour

mapping is that once the model is generated – which takes

a few minutes and needs to be calculated only once for

each camera and visual system combination – processing

each multispectral image to cone-catch quanta images is

extremely fast (15–20 megapixels per second for 32-bit blue

tit cone-catch quanta on an Intel i5 laptop). Cone map-

ping models can be generated by preparing a camera’s sen-

sitivity functions in a .csv file according to the guide and

then running ‘Generate Cone Mapping Model’. This script

will ask the user to specify the camera, the illuminant, the

receptor sensitivities of the desired visual system, the

library of natural spectra, the model interaction level and

simplification protocol (if any). The script then generates

the camera and receptor cone-catch quanta and automati-

cally uses R (R Core Team 2013) to process the data in a

linear model for each receptor. The script then retrieves

the models from R and compiles them into a script that

integrates with the other functions in the toolbox. R2 val-

ues are also extracted to judge the quality of fit in each

receptor.
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The number of camera colour channels should be equal to

or greater than the number of receptors being mapped to, and

their sensitivities should cover the same spectral range. For

example, a camera with three channels (RGB) can reliably

map to trichromatic humans, dichromatic mammals or achro-

matic dogfish cone catch, but it would not be possible to map

to species that see into ultraviolet (UV), or have particularly

narrow spectral sensitivities. The model R2 values can be used

to determine the quality of themappingmodel.

Many animals can see wavelengths below the ~400 nm

limit of humans, meaning ultraviolet (UV) photography in

addition to human-visible photography is required for mod-

elling their vision. Most camera sensors are sensitive to UV

wavelengths to some degree once their UV-blocking filters

are removed (and replaced with a UV transparent filter if

required). Our toolbox contains the spectral sensitivities of a

number of camera, lens and filter combinations with and

without this conversion for researchers who obtain the same

equipment (see Fig. 3 for between set-up comparisons).

Companies exist that can undertake the full-spectrum con-

version process (e.g. Advanced Camera Services, Thetford,

UK). Alternatively, the filter can be removed without need-

ing to be replaced with a quartz sheet as long as the sensor

can be moved sufficiently to restore focusing to infinity (e.g.

see http://www.jolyon.co.uk/2014/07/full-spectrum-nx1000/).

A full-spectrum converted camera will be sensitive to a large

band of wavelengths from UV to near infrared, although

the sensitivity to infrared is generally far higher than UV,

and extends further (often up to around 900 nm). Filters

are therefore required to photograph the relevant wave-

lengths at shutter speeds that reflect the camera’s sensitivity

to those wavelengths (e.g. UV sensitivity is often around

100 times lower than human-visible light). On-screen his-

tograms in camera live-view modes are useful for judging

the correct exposure times. For UV photography, we use

Baader Venus-U filters, transmitting wavelengths between

~320 and 380 nm, and to take photographs in the human

vision range with the same cameras, we use Baader UV/IR

cut filters, transmitting wavelengths between ~400 and

680 nm. Both filters can be purchased over the internet and

come in 2 inch sizes that, when combined with appropriate

filter holders, can be attached to most lenses. We built cus-

tom plastic filter slides to enable us to switch quickly

between filters with minimum disturbance to the camera’s

focus and position (CNC G-Code machining scripts for the

sliders can be made available on request). UV photography

also requires a lens that transmits ultraviolet wavelengths,

and most standard lenses do not do this. The standard

Nikon Nikkor 105 mm lens transmits UV wavelengths

down to approximately 360 nm; however, it is not achro-

matic between visible and UV wavelengths (an ‘achromatic’

lens is designed to limit radial chromatic distortion between

given wavelength ranges, so a visible–UV achromatic lens

will not require refocusing for sharp visible and UV pho-

tographs). Coastal Optics 60 mm and 105 mm lenses (which

are both achromatic across the UV and visible range, avail-

able from Jenoptik) have transmission below 300 nm. These

latter lenses therefore cover a greater portion of the UV

spectrum, but are considerably more expensive. A few out-

of-production lenses were made with UV transmitting glass

and can be purchased second-hand online, see Verhoeven &

Schmitt (2010). These include the Novoflex Noflexar 35 mm

and Nikkor EL 80 mm (metal body version only). Both

have transmission down to approximately 320 nm and are

good achromats. However, sourcing a pristine version

would be essential. Visible-band and UV-band photographs

can then be combined into a multispectral image stack to

enable mapping of UV-sensitive visual systems.

Fig. 3. Spectral sensitivities of duplicate camera set-ups. Solid lines

and dashed lines show the spectral sensitivities of two different set-ups

that use the same equipment and – in the case of the D7000s – have

undergone the same full-spectrum conversion. The sensitivities are

almost identical between all set-ups, suggesting that these spectral sensi-

tivity functions could be used for other identical set-ups.
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ALIGNMENT

Each channel that makes up a multispectral image stack needs

to be perfectly aligned with the others for accurate colour mea-

surements, particularly when measuring the colours of small

objects subtending a few pixels. When changing filters in field

conditions the camera is often knocked slightly, throwing out

the alignment. In addition, non-achromatic lenses need refo-

cussing in different wavelength bands. This refocussing has the

undesirable effect of zooming the image slightly, making align-

ment more problematic. The toolbox offers various alignment

options to choose from when preparing a multispectral image.

When aligning any two photographs, the nearest channels (in

terms of mean spectral sensitivity) should be used for align-

ment. These channels are specified in a camera configuration

file that also contains the order in which channels should be

extracted. Manual alignment prompts the user to use their

mouse to drag one image over the other until optimal align-

ment is reached.

An automated alignment process was also developed that

can find the correct scaling if the lens required refocussing.

Existing image alignment tools developed for image stitching

were evaluated, but found to generate unreliable alignments

between the UV-blue and visible-blue channels (the closest

channels in terms of spectral sensitivity). Thus, an exhaustive

alignment and scaling algorithm was written that can find the

optimal planar alignment and scaling factor between pho-

tographs. The script first aligns the two selected colour chan-

nels by calculating the lowest sum of absolute pixel differences

across the whole image in a three-by-three matrix at a given

offset (e.g. 128 pixels), it then centres on the best alignment and

halves the pixel offset (e.g. to 64 pixels). This continues until

the offset reaches one. The script then scales one of the images

(e.g. by 1%) and re-aligns as above. If the quality of the align-

ment is superior at the new scale, it carries on in this direction,

halving the scale value (e.g. to 0�5%); otherwise, it scales in the

opposite direction and so on until it finds the best scale and

alignment. This algorithm is fairly slow (approximately one

minute on a modern laptop depending on the chosen settings),

but reliably produces alignments far superior to those achieved

manually, even with considerable movement of objects in the

scene (e.g. foliage swaying in the wind). This automated align-

ment requires images with sufficient detail to inform the align-

ment. Large plain surfaces, for example, have few details for

the alignment to fit. Therefore, an additional option allows the

user to specify a region to align that could be the main area of

interest, or contain salient image features. Following align-

ment, the program flips between the aligned slices for a visual

inspection of the alignment quality.

TESTING MAPPING METHODS

In order to determine the accuracy of camera-based cone-catch

quanta, we performed tests on 12 different camera, lens and

filter combinations for a range of visual systems across

birds, mammals, fish and insects. The visual systems included

tetrachromats: blue tit Cyanistes caeruleus (Hart et al. 2000),

peafowl Pavo cristatus (Hart 2002); trichromats: human CIE

XYZ and honeybee workerApis mellifera (Peitsch et al. 1992);

dichromats: ferretMustela putorious furo (Calderone & Jacobs

2003; Douglas & Jeffery 2014) and pollack Pollachius pol-

lacbius (Shand et al. 1988); and an achromatic dogfish

Scyliorhinus canicula (Ga�ci�c et al. 2007). The spectral sensitivi-

ties are provided for these species in the toolbox but users

should cite the relevant sources above for the data used in the

mapping. Sensitivities have been linearly interpolated to 1 nm

increments where these data were not available. The quality of

fit was judged both from the mapping models reported fit to

the natural spectrum data base and to a number of colour sam-

ples measuredwith both camera and spectroradiometer.

The cameras, lenses and filters used are listed in Table S1

(Supporting information) and see Fig. 3. We use a channel

naming convention whereby the lower case prefix describes the

filter used (e.g. ‘v’ for visible, ‘u’ for UV), and the suffix refers

to the camera’s sensor channel (i.e. R, G or B). Spectral sensi-

tivities were determined using a method similar to Lovell et al.

(2005) and Garcia et al. (2014). However, instead of taking

multiple photographs of monochromated light at different

wavelengths, we split a collimated beam (i.e. parallel rays of

light) of broadband white light from an eyeColor arc lamp

(modified to remove it’s UV-blocking coating as above)

through a pair of fused silica prisms, projecting the resulting

‘rainbow’ onto a sintered PTFE sheet. A single photograph of

the resulting spectrum can be used together with known spec-

tral irradiance (measured with a Jeti Specbos 1211UV spectro-

radiometer) to calculate spectral sensitivities. Full methods for

this approach are beyond the scope of this article and will be

published separately; however, the results are in accordance

with other methods and result in good fits (see below, Table S1

and Fig. 3). Spectral sensitivities can be inferred using other

methods (Pike 2011); however, this requires a large number of

diffuse samples with known and subtly varied reflectance pro-

files (which is particularly problematic for UV) and makes the

assumption that sensitivities can be described by curve func-

tions, which is not always the case (see Fig. 3).

Cone mapping models were generated using a library of

3139 natural spectra. Of these, 2361 reflectance spectra were

from the Floral Reflectance Data base (Arnold et al. 2010),

and the remainderwere collected frombird eggs, bird plumage,

insects, minerals, tree bark and vegetation (unpublished data).

As stated above, this library is included with the toolbox, but

users should cite Arnold et al. (2010) and this article as the

source of these spectra. All spectra ranged from 300 to 700 nm

(blue tit, peafowl, honeybee and ferret) or 400–700 nm (human

XYZ, pollack and dogfish) at 1 nm increments, and aD65 illu-

minant was used. Trichromatic, dichromatic and achromatic

models were fitted with three-way interactions, with no model

simplification and no square transforms. Tetrachromatic mod-

els were fitted similarly, but with amaximum of two-way inter-

actions, see Table S1. A set of 48 colour pastels (Royal

Langnickel) was used as a colour chart for comparing cone-

catch quanta with the camera and spectroradiometer. Stan-

dard photography colour charts have poor UV reflectance

properties – presumably to prevent UV from fading the
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colours over time. These pastels cover a wide range of colours

and display interesting UV reflectance peaks, as highlighted in

Fig. 4. Comparing cone-catch quanta for these colours is likely

to be a conservative test of colour reproduction given the selec-

tion of complex, saturated colours when compared to most

natural spectra. Pastel reflectance spectra were measured as

above with a spectroradiometer and were photographed under

an Iwasaki eyeColor arc lamp designed to resemble D65 emis-

sion spectra. 20% and 80% reflectance Spectralon standards

were used to normalise the images (see above).

MAPPING RESULTS

ThemeanR2 values for fits between camera cone-catch quanta

and receptor cone-catch quanta for the data base of natural

spectra across all camera configurations and visual systems

was 0�999 (median >0�999), with a minimum of 0�996. These

results suggest polynomial cone mapping functions can reli-

ably convert camera colour measurements to cone-catch

quanta fromnatural reflectance spectra. Comparisons between

cone-catch estimates of complex pastel colours from camera

and spectroradiometer also suggest a good fit; the mean fit

across all cameras and visual systems was 0�981 (me-

dian = 0�983), with a minimum of 0�951 (see Table S1 and

(a)

(b)

Fig. 4. Colour sample measurements. This set of 48 colour pastels was

used to compare camera and spectroradiometer measurements of

cone-catch quanta. Image ‘a’ is a normal human-visible photograph,

and image ‘b’ is a false colour combination of green, blue andUV chan-

nels (vG, vB and uR). Both images were square-root-transformed from

32-bit linear, normalised images to display correctly on low-dynamic

rangemedia. Standard colour charts have poorUV reflectance presum-

ably to reduce colour fading with age, while these pastels have varied

reflectance spectra in UV. For example, the pastels that appear blue in

image ‘b’ haveUVpeaks relative to green and blue.

Fig. 5. Blue tit cone-catch quanta estimates for a range of pastel

colours, comparing spectrometer and camera estimates. Cone-catch

estimates from a Canon 7D with two filters and five channels (i.e.

vR, vG, vB, uB and uR) are shown in the left column, and esti-

mates from the same camera with four filters and seven channels

are shown in the right column (i.e. rR, gR, gG, bG, bB, uB and

uR). Shaded areas show standard error. Cone-catch estimates with

two filters are exceptionally good; however, the additional channels

provide some greater spectral partitioning in the medium-wave

range, improving the quality of fit most for this channel. Two of

the pastel colours were fluorescent – absorbing short wavelengths

and emitting them in the long-wave range. These two points high-

light the ability of the toolbox to work with values outside of the

0–100% reflectance range.
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Fig. 5), showing that the mapping approach is highly accurate

compared to more widespread spectrometry-based

approaches.

Image analysis

We recommend the use of the toolbox’s ‘Batch Multispectral

Image Analysis’ tool for most image measurements. This

ensures related images are measured with exactly the same

settings, and the computer can be left alone when processing

large data sets. The user is asked to specify the directory

containing the .mspec images (with their linked RAW files in

the same directory). Various options are then presented for

mapping to a given visual system (or no visual system). If

regions of interest (e.g. squares, polygons and so on; see

Fig. 1) have been added to the .mspec image, these are mea-

sured individually, or pooled together if specified (overlap-

ping regions are also unified in this case). If no regions have

been specified with the .mspec file, the whole image is mea-

sured. Scale bars added to the image can be used to auto-

matically scale all images in the batch analysis to a uniform

number of pixels per unit length, which is required for most

pattern analyses. We provide tools for performing some pat-

tern analyses based on Fast Fourier bandpass filtering. This

form of analysis is increasingly widely used to measure ani-

mal markings (e.g. Godfrey, Lythgoe & Rumball 1987; Stod-

dard & Stevens 2010) and is loosely based on our

understanding of low-level neurophysiological spatial scene

processing in numerous vertebrates and invertebrates.

Briefly, images are filtered to set of spatial frequencies, and

then, the ‘energy’ at each frequency band is measured as the

standard deviation of the filtered image (a granularity analy-

sis: Chiao et al. 2009; Stoddard & Stevens 2010; see the

guide for further information). The toolbox can provide

basic descriptive pattern statistics (corresponding to attri-

butes such as marking size, contrast and diversity; e.g. Stod-

dard & Stevens 2010) or can perform pairwise pattern

difference calculations between two objects or samples. We

also provide tools to perform colour analysis, including the

widely used receptor noise-based model of visual discrimina-

tion that can calculate the ‘just noticeable difference’ (JND)

values between samples (Vorobyev & Osorio 1998; Siddiqi

et al. 2004). This can be used to determine whether two sam-

ples are likely to be discriminable to a given visual system.

These colour and pattern analysis tools are described in

detail in the dedicated user guide.

Discussion

The field of visual ecology is rapidly growing (Cronin et al.

2014), and the availability of digital imaging makes the testing

of numerous aspects of animal and plant coloration, signalling

and camouflage available to almost any researcher. In addi-

tion, image analysis is widely used in medical studies, forensics

and beyond. However, digital photographs are nonlinear with

respect to radiance and require a range of calibrations, mean-

ing one cannot make quantitative measurements from pixel

values without first transforming those images. Some authors

and reviewers remain unaware of these issues and continue to

use software such as Adobe Photoshop tomeasure pixel values

and test RGB values from unstandardised images, not to men-

tion frequently failing to account for the visual system of their

target species. To date, the linearisation process has generally

required expensive, specialist equipment and coding skills

(Barnard & Funt 2002; Stevens et al. 2007; Garcia et al. 2013).

Our image processing toolbox overcomes these problems by

extracting linear images from RAW files (Chakrabarti, Schar-

stein &Zickler 2009; Akkaynak et al. 2014; Coffin 2015).

The toolbox provides functions that control for lighting con-

ditions in a more flexible way than previous methods (Stevens

et al. 2007), by allowing two or more grey standards to be used

for estimating reflectance in addition to the photograph’s black

point. This controls for low-level optical veiling glare (McCann

& Rizzi 2007) and also enables measurements of reflectance in

photographs taken through slightly opaque media (such as

fog, haze or murky water), or through transparent surfaces

(such as still water or glass) on the condition that the details

being reflected are suitably uniform (such as a clear or uni-

formly overcast sky), and the grey standards are next to the

objects beingmeasured.

Previous image analysis studies have also almost exclusively

used 8-bit images, which can impose serious limits on the effec-

tive dynamic range and precision available, particularly in lin-

ear images because natural scenes tend to have a log

distribution of reflectance levels. In practice, this means that

the vast majority of pixels in a linear 8-bit image cluster below

pixel levels of about 30–40 of 255. The normalisation process

of previous methods was also unable to accommodate reflec-

tance values >100% relative to the grey standard. However,

such levels are common in any natural scenes that have shiny

(non-Lambertian) surfaces, for example leaves and wet peb-

bles, as well as in cases of fluorescence or when objects emit or

transmit light through them (for example, a leaf viewed against

the sky). We have overcome this problem by importing the

images in 16-bit (preserving the camera’s entire dynamic range)

and then performing the normalisation process and subse-

quent processing on 32-bit floating point images. This allows

reflectance values >100%, removing the possibility of data loss

and saturation in image post-processing. This also enables the

measurement of shiny, luminous or fluorescent surfaces, and

any situation where the grey standard(s) receives a lower level

of illumination than other parts of the scene (as will be com-

mon in dappled shade for example).

Saving 32-bit images would take up an unwieldy amount of

space on hard drives because the multispectral stacks are often

many hundreds of megabytes. However, the speed with which

normalised or cone-catch multispectral images can be recon-

structed from their RAW files means that instead of saving

these huge files, a small ‘.mspec’ file is used that saves all of the

required information. Loading the images straight fromRAW

also makes it difficult to inadvertently apply incorrect or

repeated image transformations because the RAWfiles cannot

be edited. RAW files are also the most suitable format for

backup and archiving purposes because it is clear that no
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potentially lossy post-processing has been applied, and the

photograph’smeta-data are preserved.

Many visual ecologists work on hypotheses that relate to

non-human visual systems. Our toolbox provides functions for

mapping from camera colour to cone-catch quanta of almost

any visual system (we supply a range of model visual systems

and hope to build up a larger data base). The twomain require-

ments for cone mapping are that the photographs cover the

spectral sensitivity range of the target visual system (for exam-

ple, visible and UV bands for birds, reptiles, many insects and

so on) and that the spectral sensitivities of the camera are

known (Lovell et al. 2005; Stevens et al. 2007; Pike 2011; Gar-

cia et al. 2014). Determining these spectral sensitivities still

requires specialist equipment, and further work should make

this process more accessible to researchers, or manufacturers

should be encouraged to publish this information. We plan to

publish additional methods on this approach in time. In addi-

tion, we supply the software with spectral sensitivity curves for

the camera, lens and filter combinations that we have charac-

terised for spectral sensitivity so far. Our current work sug-

gests, at least for the Nikon D7000s and Canon D400s, that

spectral sensitivity curves do not vary greatly from one camera

to the next provided it is of the same make and model, fitted

with the same lens and filters and (if applicable) has undergone

the same full-spectrum conversion (see Fig. 3). Thus, research-

ers are free to use the spectral sensitivity curves we provide if

they use identical set-ups. However, until more camera set-ups

are characterised, this should be done with a degree of caution.

Nonetheless, with these requirements met, the toolbox can

combine multiple photographs into an aligned multispectral

stack and then transform this to animal cone-catch quanta.

Previous research has demonstrated that camera RGB mea-

surements can successfully be converted to human LMS cone-

catch quanta with polynomial mapping functions (Lovell et al.

2005; Stevens et al. 2007) and to the cone-catch values of non-

human animals (Stevens & Cuthill 2006; Pike 2011; Stevens,

Lown &Wood 2014b). We demonstrate that these models can

reliably reconstruct cone-catch quanta from a much larger

number of camera channels, but that increasing the spectral

resolution with more filters and channels is likely to provide

diminishing returns in terms of model accuracy (see Fig. 5).

The quality of these models also suggest hyperspectral imaging

(Chiao et al. 2011), which is currently extremely expensive,

and has low resolution and/or slow capture times, currently

offers minimal benefits in terms of cone-catch quantameasure-

ments compared to consumer cameras fitted with just two fil-

ters.

Finally, the toolbox offers integrated measurement tools

that can measure the colours, luminance and patterns of

selected regions and thenmodel the differences between chosen

samples. By releasing these user-friendly tools in one compre-

hensive package using open source code and software plat-

forms (Schneider, Rasband & Eliceiri 2012; R Core Team

2013), we hope to encourage more researches to use digital

cameras for making objective measurements and to exploit the

vast potential that image analysis has to address a wide range

of questions in biology.
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